


BIO- UND MEDIZINTECHNIK

## INDIVIDUELLES STRUKTURIERTES ZAHN-IMPLANTAT

Dipl.-Chem. Martina Johannes, Dipl.-Ing. Olaf Sandkuhl

In der Zahnheilkunde nimmt die Zahl inserierter dentaler Implantate stetig zu. Etwa 1,1 Millionen Implantate werden in Deutschland jährlich implantiert, wobei die Titanimplantate hier den heutigen Gold-Standard darstellen. Damit steigt auch die Zahl der Komplikationen, wie zum Beispiel Periimplantitis (Entzündung des Weichgewebes). Vorteile des Zirkonoxids sind gute Biokompatibilität bei Allergikern, hervorragende Weichgewebeeigenschaften, niedrige Plaque-Akkumulationsraten und eine ausgezeichnete Rot-Weiß-Ästhetik. Die Makro-/Mikro-Strukturierung der Keramikoberfläche erfolgt nicht über additive und/oder subtraktive Prozesse, sondern direkt bei der Formgebung der Keramik mittels Schlickerguss. Dafür wurden eine CAD/CAM-Prozesskette entwickelt und erste Prototypen gefertigt.

Für die Herstellung der Rohlinge wurden Schlicker mit 3 Mol-% und 2 Mol-% Yttrium stabilisiertem Zirkonoxid hergestellt. Mit diesen Schlickern ist es gelungen, mittels Schlickerguss die Makro-/Mikro-Strukturierung auf die Oberfläche des Dentalimplantats zu übertragen (Bild 1). Durch Weißlicht-Interferenz-

3D-Darstellung der Topographie eines Strukturelements

7
2
5
50
75
100
125
150
175
200
225
μm

Mikroskopie wurde die Topografie der Oberfläche der gesinterten Keramik untersucht. Ein Vergleich mit den CAD-Daten der Struktur zeigt eine sehr gute Übereinstimmung. Der Ra-Wert der Mikrostruktur beträgt 4,5  $\mu$ m. Die Sinterung der Keramik erfolgte bei  $\leq$  1400 °C.

| Werkstoffkennwerte  |         |          |
|---------------------|---------|----------|
| Y stab. Zirkonoxid  | 3 Mol-% | 2 Mol-%  |
| 4-Punkt-Biegung     | 985 MPa | 1140 MPa |
| Weibull-Parameter   | m 14,5  | m 20,8   |
| Bruchzähigkeit HV10 | MPa√m   | MPa√m    |
| nach Shetty         | 6,1±0,6 | 14,2±1,5 |
| nach Niihara        | 5,1±0,5 | 12,1±1,2 |
|                     |         |          |

Die Werkstoffkennwerte machen zudem deutlich, dass es mit der Verringerung der Yttrium-Stabilisierung gelungen ist, bei verbesserter Festigkeit eine Verdopplung der Bruchzähigkeit zu erzielen. Erste Zelltests zeigen, dass nach 24 h die Zellbesiedlung auf der makro-/mikro-strukturierten Keramikoberfläche vollständig erfolgte.

Wir bedanken uns für die Förderung durch den Projektträger des BMWi, ZIM-Kooperationsprojekte (KF2087357SK4).

- 1 Rohlinge aus Yttrium-stabilisiertem Zirkonoxid (Schlickerguss).
- 2 Zellbesiedlung nach 24 h.

